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Abstract. This paper deals with the objective measurement of the articulatory
imprecision severity in patients with motor speech disorders. Acoustic
recordings of repetitive sequences of plosive consonants from 58 patients are
used, along with the corresponding subjective ratings of consonant imprecision
made by two judges. An estimate of the subjective perception of imprecision
per patient is made using energy and sonority measurements of the acoustic
signal. Several Neural Networks (NN's) architectures are tested and compared
to the linear regression approach to evaluate their prediction abilities. A
reduction of more than 25% of the linear regressions error variance is obtained
with the use of NN's without a significant increment of compultational
requirements.

1 Introduction

There is a general agreement that objective measures should be used in the assessment
of voice disorders, as a complement to the perceptual judgments of the specialist
[1]{2)(3](4). Features related to voice quality. pitch perturbations and laryngeal
function have been widely addressed. and acoustic correlates of them have been
devised. In other symptoms, like those related to prosody. articulation, and nasality
fewer results have been accomplished. This paper proposes a method to obtain an
estimate of the perceived articulatory imprecision in voiceless plosive consonants. To
this end, measures of energy and sonority are used, and several function
approximators are tested, including multiple linear regression and feed-forward neural
networks.

The structure of this paper is as follows: Section | introduces the antecedents of
this work, regarding the methods to obtain the measurements of energy and sonority
used as inputs to the approximators. In Section 2 the selection of the neural network
topologies employed is discussed. together with the experiments conceived to
evaluate their effectiveness. In Section 3 the results of the experiments are shown and
analyzed, focusing on network performance and generalization capacity. In Section 4
the conclusions of this work are stated, along with recommendations for further
research.

The following subsections introduce the reader with the motives and explanation of
some approaches that might seem otherwise arbitrary.
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1.1 Perceptual Analysis

The term motor speech disorders (MSD) stands for pathologics that cause a
disturbance in the control of speech muscular movements as a conscquence of a lesion
in the central or peripheral nervous system. There are two types of MSD: dysarthria
and apraxia. Due to their characteristics [5]. it is in dysarthria and not in apraxia
where there can be consistent acoustic correlates of the perceived characteristics.
Some examples of dysarthrias are Parkinson Discase. Chorea, Amiotropic Lateral
Sclerosis.

Several studies [5][6][7] carried out in the late 60°s and early 70's were focused on
the perceptual characteristics of dysarthric speech. The results of these and other
related studies are still considered [4] the basis of clinical differential diagnosis of
dysarthria. The methodology created consisted in the realization of three exercises by
the patient, and the judgment of 38 perceptual characteristics by a panei of three
judges. The exercises proved to convey the maximum clinical information in the
minimum time possible [5]. and consisted in:

e The phonation of a sustained vowel (“a"). that allows the panel to judge the

quality, amplitude. duration and persistency of the fonatory control.

o The repetition of series of syllables using plosive consonants ("Pa” “Ta" and
~Ka™). as fast and steady as possible, giving information of rhythm. regularity
and duration of every kind of articulatory movements.

e The reading of a standard paragraph. to appraise the way the patient integrates
the phonatory, resonatory and prosodic characteristics of contextual speech.

The 38 perceptual characteristics were judged in a 7 point scale, from 0 to 6. with 0
the least perceivable and 6 the most severe level of the feature.

It was shown in these studies that each dysarthria is described by a unique set of
groups (clusters) of perceptual characteristics. and that differential diagnosis of
dysarthria is possible on the basis of the way the speech sounds.

1.2 Objective Measurement of Consonant Imprecision

This paper is focused on the objective measurement of consonant imprecision. one of
the 38 dimensions used in [6][7). Consonant Imprecision was found significant in all
the types of dysarthria reported in the mentioned studies. This fact makes a
measurement of consonant imprecision non useful in differential diagnosis. but a
good indicator instead of therapy adequacy and for rchabilitation documentation in
most dysartrias. To the authors’ knowledge. there are no previous objective indexes
reported to quantify the degree of consonant imprecision. but only indexes related to
the percentage of correctly perceived consonants in a predefined word set [8]. In
previous studics by the authors [9][10]. it was decided to work with recordings of the
Pa/Ta/Ka excrcise to obtain an objective measurement of consonant imprecision for
several reasons:

e Thisexercise is part of the standard Mayo Clinic Methodology.

e It is used to appraise the articulatory functioning. where consonant imprecision

is included.
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e The determination of the position of the consonants can be located more easily

than in the paragraph reading.

e All the consonants have similar characteristics (voiceless stops). making easier

to devise a procedure for measuring deviations from normality.

o For the latter reason. there is no nced to detect the particular consonant of each

syllable.

The common characteristics of the consonants present in the Pa/Ta/Ka are the
release of a total occlusion in a certain place of the vocal tract. and the lack of
sonority previous to that release. A listening to the Pa/Ta/Ka recordings revealed that
the possible distortions present were sonorization. nasalization and affrication (see
Table 1). The distortions found were the presence of cnergy prior to the release of the
occlusion (turbulent noise in fricatives and periodic sounds in nasal and voiced
consonants) and the presence of periodicity before the release in nasal and voiced
consonants. Two indexes of abnormality were then established. related to the energy
and the level of sonority prior to the release of the constriction.

Table 1. Substitutions found in Pa/Ta/Ka recordings, grouped by the place of the constriction
in the vocal tract

Labial Palatal Velar

Unvoiced Stops (Original) Pa Ta Ka
Voiced Stops Ba Da Ga
Nasal (Voiced) Ma Na -
Fricatives (Unvoiced) Fa Sa Ja

The first index. denoted C/E (Consonant mprecision by Energy). is a ratio of the
arcas of the energy cnvelope before (45) and after (Aa) the release of the constriction
(see Fig. 1) as defined in equation (1).
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Fig. 1. Graphical representation of the variables uscd in the calculation of C/E.

The instant of release is denoted Toq in (1). and the values of the lfmc intervals T,
and T, were 10 and 20 milliseconds (ms). respectively. The average of the C/E values

181



C. Ferrer at al.
for all the syllables found in the patient’s recording (C/E,,) was uscd as the objective

index of consonant imprecision regarding inadequate release of the occlusion.

The second index was calculated using the autocorrclation function of a scgment of
the speech signal previous to the Ton. The value of the maximum peak of the
autocorrelation in the range of possible values of fundamental period of voice (2-20
ms. 50-500 Hz) is found on each syllable. The average of these maximums is denoted
CIS,, (Consonant Imprecision by Sonority mean) and is calculated for each patient’s
recording. The speech scgment’s end is set 10 ms before Ton. and its length is 40 ms.

For the calculation of both indexes. the determination of Ton is required and
crucial. To this end, a syllable detector was devised [9). based on the analysis of the
aximums. The maximums that do not satisfy some heuristics that
syllable are eliminated from the list of

ms are considered syllable centers. The

energy envelope m
must be met to be perceived as a separate

syllable candidates, and the remaining maximu

heuristics used were:
e  Amplitude greater than 20 times the minimum value of the encrgy envelope.

e  Separation between maximums greater than 100 ms (when two maximums arc
closer than this value, the one with the lower amplitude is suppressed).
Presence of a minimum of less than 75% of the maximum’s amplitude between
itself and the previous and posterior maximums.

e  Scparation of the mentioned minimums of more than 50 ms.
Once the syllables are detected, the instant of relcase is determined as the point in

the energy envelope with the greatest positive slope in the segment between the

syllable’s center and the previous one.
This method of syliable position determination showed an 89% of correct detection
in a set of 3750 syllables of dysarthric patients [9).
With the obtained values of C/E,, and CIS,, an
judges, the linear regression of the averaged subjective judgments (SJ,,) was obtained

for both indexes and their combination. The results of the correlations and error
variances of the three regressions to the original subjective judgments are shown in

Table 2. The correlation between judges was 0.75.

d the subjective evaluations of two

Table 2. Correlations and error varainces of the linear regressions of C/E,, CIS, and their
combination C/ES),,

CIE, ClS, CIES,,
Correlation with SJ,, 0.5866 0.5642 0.6711
Error Variance 2.3527 2.4451 1.9712

1.3 Hypotheses and Objectives

Regarding consonant imprecision. the analysis of the location in the CIS,./CIE,,
plane of the four types of consonants involved suggests that a linear relationship can
be a gross estimate (Sce Fig. 2). It is considered by the authors that a linear regression
of the mdcgcs devised is not a precise approximation to the way human ears perceive
consonant imprecision. If the subjective judgment is zero for “Normal™ and six for the
other three consonants, it is evident that a nonlinear approximation should outperform

the linear regression approach.
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CIs,,

n

CIE,
Fig. 2. Representation of the consonants in Table 1 on the plane CIS,/CIE,,.

The objective of this paper is to explore the improvement in performance (i.e.
reduction in error variance or increment in correlation) a nonlinear “approximator”
(the term “predictor™ will also be used in this paper) can achieve with no significant
increment in model complexity compared to the multiple linear regression.

2 Non-Linear Models and Experiments.

Different non-linear prediction models. based on feed-forward neural networks
(FNNs). were selected and used for testing purposcs. The models included various
topologies of multilayer perceptrons (MLP) and radial basis networks (RBN) [11].
These architectures had been widely used and their abilities as function approximators
had been demonstrated in different applications [12].

2.1 Topology Selection.

The maximum number of neurons for the FNNs was set to 5. This was decided to
avoid a significant increment in the predictor’s model complexity compared to the
linear regression approach.
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Fig. 3. MLPs’ topologies tested.
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For the MLP architecture the topologies used are shown in Figure 3, in descending
order of complexity. From now on they will be referred as M5, M4, M3, M2 and M1,
respectively. A linear positive transfer function was employed in the output layer
while the hyperbolic tangent sigmoid was used for the input and hidden layer neurons
{11]. The RBF networks evaluated ranged from 2 to S neurons, and will be referred
correspondingly as R2, R3, R4 and RS.

2.2 Training Experiments

The data used for the evaluation of the predictors were the obtained C/E,, and
CIS,, indexes for 58 recordings of the Pa/Ta/Ka exercise, along with the
corresponding subjective ratings of consonant imprecision taken from [10]. In all
cases the objective indexes were employed as inputs and the subjective ratings were
used as output targets.

The generalization ability of each topology was tested (experiment “A”"), to have a
better appraisal of the tradeoff with the predictor’s performance. To this end, the
whole data set was randomly divided in two halves, a training and a control set. Each
MLP was randomly initialized several (15) times to reduce the chance of convergence
to local minimums, a common failure of the backpropagation learning function used,
and the whole training set was fed to the network 300 times, when the training
process was stopped. The best resulting MLP among the 15 initializations was chosen
as the optimal predictor for the training set. The RBF networks were obtained for the
same training set, with different spreads of the radial basis function. The best resulting
RBF among the different spreads was considered the optimal approximator within
each topology. This halving procedure was repeated 60 times, and the averaged
results for training and control sets for both MLP and RBF networks were obtained.
Each network was also trained for the whole data set (experiment “B”) to obtain their
global performances, using the same random initialization procedure for the MLPs.

3 Results and Discussion

The performances of the networks for the total data set and the training/control
experiment are shown in Tables 3 (RBFs) and 4 (MLPs and lincar regression). Table
4 includes the number of outliers obtained in experiment “A" for the 60 control sets.
An error variance greater than ten times the median of the results with the control sets
was considered as outlier. The mean error variance of the control sets results with the
outliers removed is also shown in Table 4 (row denoted “C.S. w/o Outl.”). since the
one including the outliers is practically meaningless. Another extra row in Table 4 is

the value of the Pearson’s correlation coefficient obtained between the subjective
ratings and the outputs of the MLPs predictors in experiment “B™.
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Table 3. Mean error variances of the 60 training/control experiments and fotal ervor variance
for the RBF networks

R2 R3 R4 RS
Training Set 2.2354 L7110 1.6478 15734
A) Control Set 2.5247 22109 22855 2.7619
Average 2.3801 1.9609 1.9667 2.1677
B) Whole Set 2.4794 2211 17531  1.7416

Table 4. Mean error variances of the 60 training/control experiments and total error variance
for the MLP nctworks and the Linear Regression approach.

M5 M4 M3 M2 Mi LR
Training Set  0.9893 1.1126 1.3870 1.2427 1.7779 1.7615
ControlSet  66.643 20.418 2.4949 2469.4 24995 2.2449

A) # of Outliers 8 2 0 ) 0 0
CS.wioOutl. 45264 3.2534 2.4949 2.8237 2.4995 2.2449
Average 24977 2.1649 1.9404 2.0266 2.1387 2.0052
Whole Set  1.3940 1.5136 1.6938 1.5239 1.9163 1.9712
R 0.7819 0.7603 0.7265 0.7584 0.6824 0.6711

B)

From these results it is apparent than RBFs of up to 5 neurons are not well suited to
be good approximators for this data set. The best overall performance (obtained for
R5) only surpasses the lincar regression and M| results. Besides, there is no
significant increment in performance from R4 to RS, while the generalization ability
is actually deteriorated. The lower the average performance of a topology in
experiment “A™ the higher its generalization ability.

The MLP architecture showed a better performance, although some topologies
presented outliers in the results. There is an exception in the logical increment
sequence of performance in experiment B) going from topology M1 to MS. It is in the
case of M2 and M3, where the latter has one neuron more than the former, and in
spite of this, M3 has a lower performance and a better generalization capacity. This is
due to the greater number of connections used by M2, allowing the formation of more
complex surfaces than M3. It is precisely this pair of topologies the ones with better
results taking into account global performance (in terms of error variance),
generalization capability and absence of outliers. The M2 topology has an error
variance comparable to the ones of M4 and MS, together with the second best
generalization ability, and only one outlier result. while M3 has no outlier, presents
the best generalization ability, but shows a lower global performance. Even though.
the correlation coefficient for the M3 predictor is higher than 0.707, so this model
explains more than 50% of the error variance, result that is considered acceptable in
the literature [13][14] when dealing with subjective judgments. The lowest error
variance obtained (1.39) represents a reduction of almost 30% of the obtained with
the linear regression (1.97). The values of correlation obtained (0.72~0.78) are
comparable to the 0.75 between judges.
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4 Conclusions,

From the two architectures of nonlinear approximators tested. the RBF networks did
not show a good performance or generalization ability. The MLP predictors presented
the best results, with a reduction of more than 25% of the ermor variance of the
original linear regression approach in the 5 ncurons topology. The best results
considering all the factors evaluated, were obtained for the M2 and M3 variants, with
3 and 4 ncurons, respectively. This represents no significant increment in the
approximator model complexity compared to the linear regression. The values of
correlations found are similar to the ones obtained between the subjective judgments
of the specialists.

Further research is needed to obtain a third index in order to increase predictor's
performance. Specifically. an index that could make a better separation of the
fricatives from the normal plosive consonants (see Fig. 2.) would be desired.
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